
A Preliminary Empirical Assessment of Similarity for
Combinatorial Interaction Testing of Software Product

Lines

Stefan Fischer∗, Roberto E. Lopez-Herrejon∗, Rudolf Ramler†, Alexander Egyed∗

* Johannes Kepler University Linz, Austria
† Software Competence Center Hagenberg, Austria

{stefan.fischer, roberto.lopez, alexander.egyed}@jku.at,
rudolf.ramler@scch.at

ABSTRACT

Extensive work on Search-Based Software Testing for Soft-
ware Product Lines has been published in the last few years.
Salient among them is the use of similarity as a surrogate
metric for t-wise coverage whenever higher strengths are
needed or whenever the size of the test suites is infeasi-
ble because of technological or budget limitations. Though
promising, this metric has not been assessed with real fault
data. In this paper, we address this limitation by using
Drupal, a widely used open source web content manage-
ment system, as an industry-strength case study for which
both variability information and fault data have been re-
cently made available. Our preliminary assessment corrob-
orates some of the previous findings but also raises issues
on some assumptions and claims made. We hope our work
encourages further empirical evaluations of Combinatorial
Interaction Testing approaches for Software Product Lines.

1. INTRODUCTION
Software Product Lines (SPLs) are families of related sys-

tems whose members are distinguished by the set of features
they provide [3], and their practices have shown significant
technological and economic benefits [18]. Variability is the
capacity of software artifacts to vary and its effective man-
agement and realization lies at the core of successful SPL
development [20]. However, variability makes SPL testing
challenging because the number of products in SPLs is typ-
ically large, and therefore it is infeasible to test every single
product individually.

The last few years have seen an increasing interest in ap-
plying Search-Based techniques for Combinatorial Interac-
tion Testing (CIT) of SPLs [16, 15, 14, 11]. The common
thread among these approaches is to compute test suites for
a subset of products in a SPL, covering feature interactions
based on a variability model which succinctly and formally
describes all the valid feature combinations of the products
in a SPL. However, efficiently computing higher strength t-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBST16, May 16-17, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4166-0/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897010.2897011

wise coverage (i.e. t ≥ 3) or dealing with large SPLs (i.e.,
thousands of features) remains an open challenge.

Recent work by Henard et al. proposes an approach that
uses a similarity metric as a surrogate metric for t-wise cov-
erage when higher strength cannot be effectively computed
or when there are limitations on the number of products that
can be practically tested [13]. It is based on the intuition
that the more dissimilar the products in a test suite are (i.e.
the more differences amongst products in their selected and
not-selected features), the higher chances of covering more
t-wise feature combinations. Despite first promising results,
this approach has - to the best of our knowledge - not been
empirically assessed in an industry-strength study that has
available both, a variability model and corresponding fault
data. In this paper, we report such an assessment using Dru-
pal [5], a widely used open source web content management
system, whose variability model and fault data have recently
been published by Sánchez et al. [19]. Our focus is on an-
alyzing how faults distribute among features, how effective
similarity is to detect actual faults, and how similarity com-
pares to classical t-wise coverage. Our results corroborate
some of the previous findings but also raise issues on some
of the underlying assumptions and claims made.

2. EMPIRICAL ASSESSMENT OVERVIEW
Drupal is a highly modular open source web content man-

agement framework developed in PHP that has a large com-
munity of users and developers [5]. The development of Dru-
pal uses a Git repository, an issue tracking system, and an
extensive documentation which were exploited by Sánchez
et al. to mine, among other data, a variability model that
describes a set of valid feature combinations and a list of
associated faults [19]. Drupal includes a large set of mod-
ules, more than 30,000. Each of these modules is considered
a feature. In their work, Sánchez et al. focused on a small
part of the Drupal functionality consisting of 48 features,
for which they derived a variability model and identified
3392 faults. Table 1 summarizes the characteristics of the
variability model, the number of faults they found, and the
number of t-wise sets computed. The number of constraints
corresponds to the number of CNF clauses obtained for the
variability model; details on mapping variability models to
propositional logic can be found in [4].

Our paper addresses the following three questions:
RQ1. How are the faults distributed among fea-

tures? Rationale: For the analysis of fault detection, one

2016 9th International Workshop on Search-Based Software Testing

 15

of the assumptions that Henard et al. make is that all the
t-wise interactions have the same probability to trigger a
fault. We are interested in analyzing whether this assump-
tion holds true in case of Drupal.
RQ2. What is the fault detection capability of the

similarity heuristic when using Drupal’s real fault

data? Rationale: Our goal is to assess how effective Henard
et al.’s approach is to generate configurations that contain
the feature interactions which were identified as faulty in
Drupal.
RQ3. What is the actual t-wise coverage obtained

by the similarity heuristic? Rationale: The driving goal
of Henard et al.’s approach is to mimic t-wise product con-
figurations generation partially but efficiently while achiev-
ing decent coverage [13]. In this regard, we are interested
in comparing the coverage achieved by their approach with
those implemented by an alternative tool. For this purpose,
we selected the tool CASA which is capable of computing
arrays of higher strength using simulated annealing [9].

Variability Model Summary

Num Features 48
Num Products 2.09083392E9

Num Constraints 77

t value t-sets faults

t=1 88 3232
t=2 3,751 128
t=3 103,267 29
t=4 2,065,754 3
t=5 32,025,724 —
t=6 400,771,676 —

Table 1: Drupal Case Study Overview

3. ANALYSIS
In this section we present and analyze the results obtained

from running the two different CIT approaches and discuss
their implications. As mentioned above, we used the simi-
larity based CIT approach implemented by Henard et al.1,
and CASA to compute t-wise covering arrays up to t=4 [9].
All the experiments where performed on a system with an
Intel Core i7-3610QM@2.30GHz, 16GB of memory, and a
64Bit environment.

3.1 RQ1: Distribution of Faults
Figure 1 shows for each feature the number of faults it

is in, the average number of faults per feature, and the
standard deviation σ. We distinguish between single fea-
ture faults (i.e. t=1, Figure 1a) and interaction faults (i.e.
t=2..4, Figure 1b) in order to analyze if the distribution of
faults changes when just looking into one of the two kinds
of faults. Moreover the majority of faults are within single
features, which means the interaction faults would not have
much impact if analyzed together with the single feature
faults.

In Figure 1 we can observe that the faults are not evenly
distributed over the features, neither for single feature faults,
nor for interaction faults. In both cases the standard devia-
tion σ is even greater than the average. The strongly varying

1http://www.research.henard.net/SPL/TSE 2014/

σ : 162.69

0
200
400
600
800

1,000

Average: 67.3

Feature

F
a
u
lt
s

(a) Single Feature Faults (i.e. t=1)

σ : 9.98

0
10
20
30
40
50

Average: 7.4

Feature

F
a
u
lt
s

(b) Interaction Faults (i.e. t=2..4)

Figure 1: Distribution of Faults

number of faults per feature indicates that the features as
well as their t-wise interactions have different probabilities
to trigger a fault.

Furthermore, we were also interested in the probabilities
of a fault being present in a particular product. We calcu-
lated the number of products in Drupal that contain faulty
t-wise interactions. We found that single feature faults ap-
pear on average in 70.5% of the products. Faults were two
features interact (i.e., t=2) are on average in 55.1% of the
products and faults with t= 3 and t=4 are in 48.3% and
16.5% of the products respectively. This shows that there
are higher probabilities of including faults with fewer inter-
acting features, which is not surprising since it is expected
that there exist fewer products with interactions of many
features.

3.2 RQ2: Fault Detection Capability
To assess the fault detection capability of Henard’s ap-

proach we measured how many of the faults identified in
Drupal are actually found (covered) by the generated sam-
ple of products. For comparison we calculate covering arrays
using CASA, which stops once all the t-wise interactions are
covered, hence all t-wise faults are covered. Table 2 shows
the CASA run time and the size of the resulting covering
arrays. We used t=1,2,3,4 since Drupal does not have faults
of any higher degrees.

t− value time size

1 14 sec 3
2 2 sec 11
3 9.5 min 38
4 42 hours 126

Table 2: t-wise Covering Arrays with CASA, time for exe-
cution and size

Next we configured Henard’s tool to receive as input the
number of products (i.e. size of the covering array) that we
obtained from CASA and performed ten runs with a fixed
time limit for each run. Subsequently we calculated the
number of faults that were missed by the generated prod-
ucts. The results are shown in Table 3. It lists the number
of missed faults over all ten runs for each t between 1 and
4 in the worst (w), the average (a), and the best (b) case.
In the first row of Table 3 one can see that for only three
products there are some faults missed for each t. Even some
single feature faults are missed here, which would have been
covered in a CASA covering array. However in the next

16

m
time
[min]

missed faults for t
t=1 t=2 t=3 t=4

w a b w a b w a b w a b

3 1 2 0.4 0 20 12.7 3 10 5.4 1 3 1.7 0
11 1 0 0 0 0 0 0 1 0.3 0 1 0.1 0
38 10 0 0 0 0 0 0 0 0 0 0 0 0
126 10 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Faults Missed in 10 runs, for different numbers of Products m, w=worst, a=average, b=best run

row, with eleven products, we can observe that all faults for
t=1 and t=2 are covered. Only some faults for t=3 and
t=4 were missed, for which there is no guarantee that these
faults would have been covered in the 2-wise CASA cover-
ing array either. Moreover, as discussed in Subsection 3.1,
the probabilities of discovering faults are getting smaller the
more features are needed to trigger it. Finally, the next
rows show that after generating 38 and more products, all
the faults are covered. This indicates that Henard’s similar-
ity approach is useful to detect interaction faults in Drupal.

3.3 RQ3: T-wise coverage
To answer the last research question we measured the ac-

tual coverage obtained by Henard’s arrays. This tells us if
similarity is a good surrogate metric for coverage in case of
Drupal. We used the same runs of Henard’s tool as for an-
swering RQ2 to be able to compare the results with those
of CASA for specific t-wise coverage. Note the time limits
t were chosen according to settings from Henard’s previous
work. As to be expected the coverage gets worse for higher t,
as can be seen in Figure 2. Moreover for arrays sizes m that
were needed in a CASA covering arrays to cover all t-wise
interactions, Henard’s tool still missed a small percentage of
them. For instance, for an array size of eleven, which was
the size of the 2-wise covering array calculated with CASA,
the coverage with Henard’s tool was at 99%. Nonetheless
this was to be expected, since Henard’s approach uses simi-
larity instead of coverage to validate the results, which will
only allow an approximation at best. Nevertheless the re-
sults indicate that similarity based CIT approaches can yield
a t-wise coverage comparable with CASA results.

4. RELATED WORK
Testing of SPLs is a topic with a large body of work as at-

tested by two contemporary systematic mapping studies [7,
6]. These studies provide a wide overview of the area and
focus on categorizing SPL testing approaches along crite-
ria within the realm of SPL such as handling of variability
and variant binding times, as well as other aspects like test
organization and process.

The last few years have seen an increasing research in ex-
ploiting Search-Based techniques throughout the entire de-
velopment cycle of SPLs. The survey of Harman et al. [11],
and the systematic mapping study of Lopez-Herrejon et al. [16]
document this increasing interest. Furthermore, both stud-
ies identified testing as the main SPL development activity
where Search-Based techniques have been used.

More recently, we performed a systemic mapping study to
further analyze the work on CITs for SPLs [15]. We found
another approach proposed by Al-Hajjaji et al. that also
uses a similarity metric[2], but in contrast with Henard et
al.’s approach it is based on Hamming distance and it is

1 2 3 4 5 6
0

20

40

60

80

100

t

t-
w
is
e
C
ov
er
a
g
e
[%

]

m=3 t=1 min

m=11 t=1 min

m=38 t=10min

m=126 t=10min

Figure 2: t-wise Coverage with respect to the number of
products and time

applied for prioritization of covering arrays once they have
been computed. In addition, this study confirmed among
other things that most of the existing works focus on pair-
wise coverage, aim at optimizing a single objective func-
tion (e.g. minimizing test suite size or maximizing cover-
age), consider only information from the variability model
to compute the covering arrays, and use mainly evolution-
ary and greedy algorithms. The latter finding goes in line
with the work by Feldt and Poulding who point out that re-
search on SBST covers only a limited number of techniques
and algorithms [8], and they argue that SBST researchers
should consider other approaches, more combinations and
hybrid solutions. In the case of SBST of SPLs, only in a
few instances (e.g. see [21]) other techniques such as swarm
optimization have been explored.

Furthermore, the survey and mapping studies on Search-
Based techniques applied to SPLs also point out some open
research avenues such as taking a multi-objective optimiza-
tion view or considering non-functional properties, both is-
sues also raised as research avenues by the work of Harman
et al. for standard (i.e. non SPL) SBST [12].

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented our preliminary findings from

assessing a similarity based CIT approach by applying it to
the Drupal case study, an SPL with documented faults and
a variability model. Even though we discovered that the
faults in Drupal are not evenly distributed over all t-wise
interactions and therefore disproved the assumption that all
t-wise interactions have the same probability of triggering a
fault in the case of Drupal, we still found that the similar-

17

ity based CIT approach produces competitive results when
compared to t-wise coverage. These results seem to indicate
that similarity is in fact a suitable surrogate metric for t-wise
coverage, but further analysis including more diverse and
larger SPLs and statistical analysis, and performing distinc-
tive runs of the tools is needed to provide a more empirical
footing to our work.

Our work can help to identify several avenues for further
research. First and foremost is gathering more empirical
data of other case studies that provide variability as well as
fault data. We are currently extending the work by Abal et
al. that identified bugs in Linux [1], by considering the evo-
lution in both the variability model and the identified bugs.
Further empirical studies will definitively help to better as-
sess Hernard et al.’s approach and others with actual real
fault data, a common practice in CIT for single systems.

Petke et al. argue that constraints are the future of CIT [17].
This is certainly the case for SPLs where constraints define
the valid combinations of features, hence reducing the search
space. However, from our point of view, the current work
on CIT for SPLs has not sufficiently explored constraints
that stem from other sources such as code artifacts (e.g.
method dependencies) or non-functional properties (e.g. fea-
ture LOC size) that could help to better constrain the search
spaces for SBST of SPLs. For instance Sánchez et al. dis-
covered that for Drupal there is a correlation between the
number of faults reported for a feature and the size of that
feature in lines of code [19]. We believe it would be interest-
ing to perform such analysis also on other SPLs, to check if
such metrics can be a suitable to improving the sampling of
products for testing.

6. ACKNOWLEDGMENTS
We thank Christopher Henard for this help clarifying ques-

tions about their work and tool support. We also thank Ana
Sánchez and her group for providing the data of the Drupal
case study. Stefan Fischer is a recipient of a DOC Fellow-
ship of the Austrian Academy of Sciences at the Institute
for Software Systems Engineering. This research was par-
tially funded by the Austrian Science Fund (FWF) projects
P25289-N15, P25513-N15. The research reported in this pa-
per has been partly supported by the Austrian Ministry for
Transport, Innovation and Technology, the Federal Ministry
of Science, Research and Economy, and the Province of Up-
per Austria in the frame of the COMET center SCCH.

7. REFERENCES

[1] I. Abal, C. Brabrand, and A. Wasowski. 42 variability
bugs in the linux kernel: a qualitative analysis. In
I. Crnkovic, M. Chechik, and P. Grünbacher, editors,
ASE, pages 421–432. ACM, 2014.

[2] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and
G. Saake. Similarity-based prioritization in software
product-line testing. In SPLC. ACM, 2014.

[3] D. S. Batory, J. N. Sarvela, and A. Rauschmayer.
Scaling step-wise refinement. IEEE Trans. Software
Eng., 30(6):355–371, 2004.

[4] D. Benavides, S. Segura, and A. R. Cortés.
Automated analysis of feature models 20 years later:
A literature review. Inf. Syst., 35(6):615–636, 2010.

[5] D. Buytaert. Drupal Framework.
http://www.drupal.org, accessed in October 2015.

[6] I. do Carmo Machado, J. D. McGregor, Y. C.
Cavalcanti, and E. S. de Almeida. On strategies for
testing software product lines: A systematic literature
review. Information and Software Technology,
56(10):1183 – 1199, 2014.

[7] E. Engström and P. Runeson. Software product line
testing - a systematic mapping study. Inform. &
Software Tech., 53(1):2–13, 2011.

[8] R. Feldt and S. M. Poulding. Broadening the search in
search-based software testing: It need not be
evolutionary. In Gay and Antoniol [10], pages 1–7.

[9] B. Garvin, M. Cohen, and M. Dwyer. Evaluating
improvements to a meta-heuristic search for
constrained interaction testing. Empirical Software
Engineering, 16(1):61–102, 2011.

[10] G. Gay and G. Antoniol, editors. 8th IEEE/ACM
International Workshop on Search-Based Software
Testing, SBST 2015, Florence, Italy, May 18-19,
2015. IEEE, 2015.

[11] M. Harman, Y. Jia, J. Krinke, W. B. Langdon,
J. Petke, and Y. Zhang. Search based software
engineering for software product line engineering: a
survey and directions for future work. In SPLC, 2014.

[12] M. Harman, Y. Jia, and Y. Zhang. Achievements,
open problems and challenges for search based
software testing. In ICST, pages 1–12. IEEE, 2015.

[13] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test configurations for software
product lines. IEEE Trans. Software Eng.,
40(7):650–670, 2014.

[14] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano,
A. Egyed, and E. Alba. Computational Intelligence
and Quantitative Software Engineering, chapter
Evolutionary Computation for Software Product Line
Testing: An Overview and Open Challenges. Springer,
2015. Accepted for publication.

[15] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and
A. Egyed. A first systematic mapping study on
combinatorial interaction testing for software product
lines. In ICST Workshops, pages 1–10, 2015.

[16] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A
systematic mapping study of search-based software
engineering for software product lines. Journal of
Information and Software Technology, 2015.

[17] J. Petke. Constraints: The future of combinatorial
interaction testing. In Gay and Antoniol [10].

[18] K. Pohl, G. Bockle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

[19] A. B. Sánchez, S. Segura, J. A. Parejo, and
A. Ruiz-Cortés. Variability testing in the wild: The
drupal case study. Software and Systems Modeling
Journal, pages 1–22, Apr 2015.

[20] M. Svahnberg, J. van Gurp, and J. Bosch. A
taxonomy of variability realization techniques. Softw.,
Pract. Exper., 35(8):705–754, 2005.

[21] S. Wang, S. Ali, and A. Gotlieb. Cost-effective test
suite minimization in product lines using search
techniques. Journal of Systems and Software,
103:370–391, 2015.

18

